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152, Japan 

Received 2 March 1979 

Abstract. The first-order cumulant expansion of the real-space renormalisation group is 
applied to the king model on d-dimensional hypercubic lattices in d = 2,3,  4 and 5. These 
calculations enable us to study the effect of dimensionality on the first-order cumulant 
expansion. Monte Carlo methods are used to make the calculations possible. One result is 
that the scaling power uH shows the effect of the critical dimension, while the scaling power 
a, does not. 

1. Introduction 

There has been much work using the real-space renormalisation group (RSRG) since 
Niemeijer and Van Leeuwen (1973) introduced the formalism. With a few exceptions 
(Hilhorst et a1 (1978), and various exact calculations in d = l ) ,  however, the RSRG 
approaches involve approximations such as the cluster expansion, the cumulant expan-. 
sion and the variational method whose natures have not yet been well understood. If we 
could treat the RSRG rigorously in all dimensions, we should expect its results to 
coincide with those of high-temperature expansions and to reveal the mean field 
exponents in dimensions higher than or equal to the critical dimension of 4. However, 
as long as the RSRG remains an approximation, the question arises what the effect of 
dimensionality on the RSRG is. As an attempt to answer this question (because the 
result naturally depends on the approximation used), we have calculated the critical 
exponents of the Ising model on the d-dimensional hypercubic lattice, using the 
simplest approximation. This approximation is the first-order cumulant expansion 
(ioc) where we choose a cell as the d-dimensional hypercube containing 3 d  sites (figure 
1). Since it is virtually impossible to perform calculations by hand in dimensions higher 
than 4, we used the Monte Carlo (MC) method (Ma 1976, Friedman and Felsteiner 
1977, Rhcz and R u j h  1977) to evaluate the ioc. Furthermore, as a check on the 
accuracy of the MC, we have calculated the ioc for d = 2 and 3, where we can compare 
with results obtained without using the MC method (Hsu et a1 1975, Hsu and Gunton 
1977). 
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Figure 1. Cells (d = 2). The shaded areas are the zeroth-order cells. The interactions 
between cells (the unshaded area) are treated as a perturbation. 

2. Formulae used in the MC calculation 

The recursion relation for the nearest-neighbour interaction K in the case of ioc is 
(Niemeijer and Van Leeuwen 1973, RAC, and RujAn 1977) 

K' = Kf(K) (1) 
where 

Here S:  is the Ising spin on the n th site of the ith cell, and M = EMS:. (We do not have 
to consider more than one cell. in the recursion relations of the IOC.) The Xk indicates 
that a summation is taken over the 3d-' sites on one surface of the cell. The bracket 
( * ) denotes the usual thermal average within the ceil. 

The critical temperature T,( = J / k B K * )  is determined by the fixed point condition 
(cf equation (I)) 

f (K*)  = 1. (3) 
The thermal eigenvalue of the linearised recursion relation is 

To calculate f ' (K*)  by the MC method, we have two choices: (i) numerical differen- 
tiation and (ii) a fluctuation calculation. We have adopted the latter. Hence: 

A T =  1 + 2 K " ~ ' ( S : ' s g n M ) ( ( S : ' E s g n M ) - ( S :  sgnM)(E)) .  ( 5 )  
n 

Here E = &l) Sk Si, and the sumination &l) is taken over all nearest-neighbour spin 
pairs in the cell. 

The magnetic eigenvalue associated with the odd part (see Niemeijer and Van 
Leeuwen 1973) of the linearised recursion relation i s  
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We determine the numerical value K* by a least square fit of the numerical results 
for f ( K )  at 21 different K values. The data for each K value are obtained using 1000 
MC steps/spin. The eigenvalues AT and AH are determined in a similar fashion. 

- 

3. Results and discussion 

Since MC is a statistical method, the results differ from run to run. Therefore we 
calculated the mean values and the variances (errors) from 4 independent MC runs. 
One MC run corresponds to 21 x 1000 MC steps/spin. We present our results in table 1 
and figure 2, Note that our results in table 1 are consistent with the d = 2, 3 results of 
Hsu and Gunton (1977). 

Table 1. Results. The errors indicated are estimates due to 4 MC runs. ', Hsu and Gunton 
(1977); *,**, Stanley 1971. a;' = d In 3/1n AT, cy = 2-a;' ; a:' = d In 3/ln AH, 1/6 = 
ah1 -. 1. 

2 0.473 * 0.005 2.142f0.03 -0.142 * 0.03 1.028 * 0,003 35,7*4 

3 0.258 * 0.003 2.57 * 0.02 -0.57 f 0.02 1.187 f 0.003 5.35 hO.1 

4 0.171) * 0.002 2 4 0 *  0.02 --0.80f0.02 1.283 f 0.003 3.53.kO.03 
5 0.136f0.003 2.95 k0.11 -0.95 zk 0.11 1377*0.02 2.65 * 0 3 

(0.4697") (2,157") (-0.157") (1.0293") (34.13") 

(0,2599") (2 .575") (-0.575") (1.1853") (5.397") 
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Figuee 2. Exponents (a, f i ,  y, 6 and v )  versus d. 0, present results calculated by using the 
data in table 1;  0, rigorous or high-temperature expansion results (see Stanley 1971); 
~ , molecular field results. a =2-a , ' ;p=(1-aH)a , ' ;  ~ = ( 2 a H - - l ) a ; ' ; ~ - ~  
aH(l  - aH)-'; U = 1 Ida,. 
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In d = 4, the magnetic exponent S is fairly near the mean field value of 3, but the 
exponent a is far from the mean field value of zero. Formally, however, it is better to 
state the accuracy of the approximation in terms of a, and U H  (Stanley 1971) because 
a = 0 in d 24. Thus the deviation of a;l' from the exact value (=$) is -4% though that 
of a;' from the exact value ( = 2 )  is -40%. One reason for this difference might be as 
follows. The expansion of A H  starts from the zeroth-order term, i.e. (IMI), while that of 
AT starts from first-order terms in the perturbation series. Consequently, the contribu- 
tion of neglected second- and higher-order terms is larger in AT than in AH. 

A similar difference in accuracy between the thermal and magnetic scaling powers 
can also be found in d = 5. In d > 4, however, we should expect the presence of the 
'dangerous irrelevant variable' (Fisher 1973, Knops et a1 1977) which would break 
some of the relations between exponents and eigenvalues such as v = In 3,411 AT and 
a = 2 - d In 3/ln AT. This would in turn cause the breakdown of hyperscaling such as 
dv = 2 -a.  This problem must be left for a future work since the present method (ioc) 
is inadequate to address it. 

In summary, we have calculated the effect of the dimensionality on the first-order 
cumulant expansion of the RSRG and obtained the result which indicates that the 
magnetic exponent S reflects the critical dimension better than the thermal exponent a 
does. 

This is only a first step, and various extensions are possible. It is easy, for example, 
to enlarge the linear dimension of the cell, which was fixed at 3 here, to be 
5 ,7 ,  . . . , (2n  + 1). Only considerations of computer time limit us. Another direction is 
to apply other approximations such as the second-order cumulant expansion and cluster 
expansions. Also of great interest to us is to extend this approach to random Ising 
models. Recently, applications of RSRG to this problem have begun to appear (Tatsumi 
and Kawasaki 1376, Kinzel and Fischer 1978). 
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